Skip to main content
Log in

A highly thermal-resistant electrospun-based polyetherimide nanofibers coating for solid-phase microextraction

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A high-temperature-resistant solid-phase microextraction (SPME) fiber was prepared based on polyetherimide (PEI) by the electrospinning method. The PEI polymeric solution was converted to nanofibers using high voltages and directly coated on a stainless steel SPME needle. The scanning electron microscopy images of PEI coating showed fibers with diameter range of 500–650 nm with a homogeneous and smooth surface morphology. The SPME nanofibers coating was optimized for PEI percentage, electrospinning voltage, and time. The extraction efficiency of the coating was investigated for headspace SPME of some environmentally important polycyclic aromatic hydrocarbons from aqueous samples followed by gas chromatography–mass spectrometry measurement. In addition, the important extraction parameters including extraction temperature, extraction time, ionic strength, as well as desorption temperature and time were investigated and optimized. The detection limits of the method under optimized conditions ranged from 1 to 5 ng L−1 using time-scheduled selected ion monitoring mode. The relative standard deviations of the method were between 1.1 and 7.1 %, at a concentration level of 500 ng L−1. The calibration curves of polycyclic aromatic hydrocarbons showed linearity in the range of 5–1000 ng L−1. The developed method was successfully applied to real water samples and the relative recovery percentages obtained from the spiked water samples were from 84 to 98 % for all the selected analytes except for acenaphthene which was from 75 to 106 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arthur CL, Pawliszyn J (1990) Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  2. Aranda R, Kruus P, Burk RC (2000) J Chromatogr A 888:35–41

    Article  CAS  Google Scholar 

  3. Chen JM, Zou J, Zeng JB, Song XH, Ji JJ, Wang YR, Ha J, Chen X (2010) Anal Chim Acta 678:44–49

    Article  CAS  Google Scholar 

  4. Jiang R, Zhu F, Luan TG, Tong YX, Liu H, Ouyang GF, Pawliszyn J (2009) J Chromatogr A 1216:4641–4647

    Article  CAS  Google Scholar 

  5. Kumar A, Gaurav, Malik AK, Tewary DK, Singh B (2008) Anal Chim Acta 610:1–14

    Article  CAS  Google Scholar 

  6. Li X, Zhong M, Chen JM (2008) J Sep Sci 31:2839–2845

    Article  CAS  Google Scholar 

  7. Wu JC, Pawliszyn J (2001) J Chromatogr A 909:37–52

    Article  CAS  Google Scholar 

  8. Trojanowicz M (2003) Microchim Acta 143:75–91

    Article  CAS  Google Scholar 

  9. Feng JJ, Sun M, Li JB, Liu X, Jiang SX (2011) Anal Chim Acta 701:174–180

    Article  CAS  Google Scholar 

  10. Mehdinia A, Mousavi MF, Shamsipur M (2006) J Chromatogr A 1134:24–31

    Article  CAS  Google Scholar 

  11. Liu HM, Wang DA, Ji L, Li JB, Liu SJ, Liu X, Jiang SX (2010) J Chromatogr A 1217:1898–1903

    Article  CAS  Google Scholar 

  12. Feng JJ, Sun M, Liu HM, Li JB, Liu X, Jiang SX (2010) J Chromatogr A 1217:8079–8086

    Article  CAS  Google Scholar 

  13. Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  14. Qi DJ, Kang XJ, Chen LQ, Zhang YY, Wei HM, Gu ZZ (2008) Anal Bioanal Chem 390:929–938

    Article  CAS  Google Scholar 

  15. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Adv Drug Deliv Rev 59:1413–1433

    Article  CAS  Google Scholar 

  16. Chigome S, Torto N (2011) Anal Chim Acta 706:25–36

    Article  CAS  Google Scholar 

  17. Ramakrishna S, Fujihara K, Teo W, Lim T, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific, Singapore

    Book  Google Scholar 

  18. Bhardwaj N, Kundu SC (2010) Biotechnol Adv 28:325–347

    Article  CAS  Google Scholar 

  19. Chronakis IS (2005) Mater J Process Technol 167:283–293

    Article  CAS  Google Scholar 

  20. Kang XJ, Chen LQ, Zhang YY, Liu YW, Gu ZZ (2008) J Sep Sci 31:3272–3278

    Article  CAS  Google Scholar 

  21. Kang XJ, Pan C, Xu Q, Yao YF, Wang Y, Qi DJ, Gu ZZ (2007) Anal Chim Acta 587:75–81

    Article  CAS  Google Scholar 

  22. Zhang YY, Kang XJ, Chen LQ, Pan C, Yao YF, Gu ZZ (2008) Anal Bioanal Chem 391:2189–2197

    Article  CAS  Google Scholar 

  23. Bagheri H, Aghakhani A, Akbari M, Ayazi Z (2011) Anal Bioanal Chem 400:3607–3613

    Article  CAS  Google Scholar 

  24. Chigome S, Darko G, Buttner U, Torto N (2010) Anal Methods 2:623–626

    Article  CAS  Google Scholar 

  25. Yoshimatsu K, Ye L, Lindberg J, Chronakis IS (2008) Biosens Bioelectron 23:1208–1215

    Article  CAS  Google Scholar 

  26. Zhao J, Yuan WZ, Xu A, Ai F, Lu Y, Zhang Y (2011) React Funct Polym 71:1102–1109

    Article  CAS  Google Scholar 

  27. Lee KH, Kim DJ, Min BG, Lee SH (2007) Biomed Microdevices 9:435–442

    Article  CAS  Google Scholar 

  28. Bagheri H, Ayazi Z, Aghakhani A, Alipour N (2012) J Sep Sci 35:114–120

    Article  CAS  Google Scholar 

  29. Bagheri H, Aghakhani A (2012) Anal Chim Acta 713:63–69

    Article  CAS  Google Scholar 

  30. Zewe JW, Steach JK, Olesik SV (2010) Anal Chem 82:5341–5348

    Article  CAS  Google Scholar 

  31. Bagheri H, Aghakhani A, Baghernejad M, Akbarinejad A (2012) Anal Chim Acta 716:34–39

    Article  CAS  Google Scholar 

  32. Bagheri H, Aghakhani A (2011) Anal Methods 3:1284–1289

    Article  CAS  Google Scholar 

  33. Brydson JA (1999) Plastics materials. Butterworth-Heinemann, Oxford

    Google Scholar 

  34. Harsha AP, Thakre AA (2007) Wear 262:807–818

    Article  CAS  Google Scholar 

  35. Abadie MJM (2012) High performance polymers—polyimides based—from chemistry to applications. InTech, Croatia

    Book  Google Scholar 

  36. Abadie MJM, Rusanov AL, Komarova LG, Voytekunas VY (2007) Practical guide to polyimides, processable aromatic polyimides based on non-traditional raw materials. Smithers Rapra Technology Limited, Shrewsbury, UK

    Google Scholar 

  37. Tuncer E (2013) [cond-mat soft]. 1–20, doi: arXiv:1304.5536

  38. Rahbari-Sisakht M, Ismail AF, Ranad D, Matsuura T (2012) Sep Purif Technol 98:472–480

    Article  CAS  Google Scholar 

  39. Bakeri G, Ismail AF, Shariaty-Niassar M, Matsuura T (2010) J Membr Sci 363:103–111

    Article  CAS  Google Scholar 

  40. Naima R, Ismail AF (2013) J Hazard Mater 250–251:354–361

    Article  Google Scholar 

  41. Samanta SK, Singh OV, Jain RK (2002) Trends Biotechnol 20:243–248

    Article  CAS  Google Scholar 

  42. King AJ, Readman JW, Zhou JL (2004) Anal Chim Acta 523:259–267

    Article  CAS  Google Scholar 

  43. Garcia-Falcon MS, Cancho-Grande B, Simal-Gándara J (2004) Water Res 38:1679–1684

    Article  CAS  Google Scholar 

  44. Witt G, Liehr GA, Borck D, Mayer P (2009) Chemosphere 74:522–529

    Article  CAS  Google Scholar 

  45. Liu JF, Jiang GB, Chi YG, Cai YQ, Zhou QX, Hu JT (2003) Anal Chem 75:5870–5876

    Article  CAS  Google Scholar 

  46. Ratola N, Alves A, Kalogerakis N, Psillakis E (2008) Anal Chim Acta 618:70–78

    Article  CAS  Google Scholar 

  47. Rezaee M, Assadi Y, Milani Hosseini M-R, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9

    Article  CAS  Google Scholar 

  48. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) Polymer 42:261–272

    Article  CAS  Google Scholar 

  49. Demir MM, Yilgor I, Yilgor E, Erman B (2002) Polymer 43:3303–3309

    Article  CAS  Google Scholar 

  50. Frenot A, Chronakis IS (2003) Curr Opin Colloid In 8:64–75

    Article  CAS  Google Scholar 

  51. Sill TJ, von Recum HA (2008) Biomaterials 29: 1989–2006

  52. Díez S, Bayona JM (2008) Talanta 77:21–27

    Article  Google Scholar 

  53. Silva I, Rocha SM, Coimbra MA (2009) Anal Chim Acta 635:167–174

    Article  CAS  Google Scholar 

  54. Rianawati E, Balasubramanian R (2009) Phys Chem Earth 34:857–865

    Article  Google Scholar 

  55. Pang L, Liu J-F (2012) J Chromatogr A 1230:8–14

    Article  CAS  Google Scholar 

  56. Bagheri H, Roostaie A (2012) J Chromatogr A 1238:22–29

    Article  CAS  Google Scholar 

  57. Gholivand MB, Abolghasemi MM, Fattahpour P (2011) Anal Chim Acta 704:174–179

    Article  CAS  Google Scholar 

  58. Maghsoudi S, Noroozian E (2012) Chromatographia 75:913–921

    Article  CAS  Google Scholar 

  59. Bagheri H, Ayazi Z, Aghakhani A (2011) Anal Chim Acta 683:212–220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Research Council and Graduates School of Sharif University of Technology (SUT) for supporting the project. M. Naderi is acknowledged for assistance to the whole work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Bagheri.

Additional information

Published in the topical collection Microextraction Techniques with guest editors Miguel Valcárcel Cases, Soledad Cárdenas Aranzana and Rafael Lucena Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagheri, H., Akbarinejad, A. & Aghakhani, A. A highly thermal-resistant electrospun-based polyetherimide nanofibers coating for solid-phase microextraction. Anal Bioanal Chem 406, 2141–2149 (2014). https://doi.org/10.1007/s00216-013-7407-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7407-y

Keywords

Navigation